The Weyl bundle as a differentiable manifold

نویسنده

  • Jaromir Tosiek
چکیده

Construction of an infinite dimensional differentiable manifold R∞ not modelled on any Banach space is proposed. Definition, metric and differential structures of a Weyl algebra (P ∗ p M [[~]], ◦) and a Weyl algebra bundle (P∗M[[~]], ◦) are presented. Continuity of the ◦-product in the Tichonov topology is proved. Construction of the ∗-product of the Fedosov type in terms of theory of connection in a fibre bundle is explained. PACS numbers: 02.40.Hw, 03.65.Ca

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

ON THE LIFTS OF SEMI-RIEMANNIAN METRICS

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

متن کامل

A Note on Kosmann-lie Derivatives of Weyl Spinors

Lie derivatives arise in studying continuous symmetries of various geometric structures on manifolds. They are also used in symmetry analysis of ordinary and partial differential equations (see [1]). In general relativity the bundle of Weyl spinors SM is a special geometric structure built over the space-time manifold M . The main goal of this paper is to clarify the procedure of applying Lie d...

متن کامل

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

متن کامل

Holonomy of Tame Weyl Structures

A Weyl structure on a compact conformal manifold is not complete in general. If, however, the life-time of incomplete geodesics can be controlled on compact subsets of the tangent bundle, the Weyl connection is called tame. We prove that every closed, non-exact, tame Weyl structure on a compact conformal manifold is either flat, or has irreducible holonomy, generalizing an analogous statement f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008